1. Tentukan persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A (-3,5)
Penyelesaian :
Lingkaran berpusat di O(0,0) dan melalui titik A(-3,5), maka jari-jari r adalahr = √((-3)2 + 52) = √34
r2 = 34
Persamaan lingkarannya x2 + y2 = r2
x2 + y2 = 34
Jadi, persamaan lingkaran yang berpusat di O(0,0) dan melalui titik A(-3,5) adalah
L ≡ x2 + y2 = 34
Bentuk Umum Persamaan Lingkaran
2. Tentukan pusat dan jari-jari lingkaran L ≡ x2 + y2 + 4x – 10y + 13 = 0
Penyelesaian :
L ≡ x2 + y2 + 4x – 10y + 13 = 0L ≡ (x + 4x)2 + (y2 – 10y) = - 13
L ≡ (x2 + 4x + 4) – 4 + (y2 + 4x – 10y + 25) – 25 = - 13
L ≡ (x + 2)2 + (y – 5)2 = 16
Dari persamaan yang terakhir ini, dapat diketahui bahwa lingkaran L ≡ x2 + y2 + 4x – 10y + 13 = 0 mempunyai pusat (-2,5) dan jari-jari r = 4
Persamaan Garis Singgung Lingkaran
3. Tentukan persamaan garis singgung lingkaran L ≡ x2 + y2 = 13 yang melalui titik (-3,2)
Penyelesaian :
Titik (-3,2); x1 = -3 dan y1 = 2, terletak pada L ≡ x2 + y2 = 13Persamaan garis singgungnya : (-3)x + (2)y = 13
-3x + 2y = 13
4. Tentukan persamaan garis singgung lingkaran L ≡ (x – 3)2 + (y + 1)2 = 25 yang melalui titik (7,2)
Penyelesaian :
Titik (7,2); x1 = 7 dan y1 = 2, terletak pada L ≡ (x – 3)2 + (y + 1)2 = 25Persamaan garis singgungnya : (7 – 3)(x – 3) + (2 + 1)(y +1) = 25
4x – 12 + 3y – 34 = 25
4x + 3y – 34 = 0
Jadi, persamaan garis singgung lingkaran L ≡ (x – 3)2 + (y + 1)2 = 25 yang melalui titik (7,2) adalah 4x + 3y – 34 = 0
5. Tentukan persamaan garis singgung pada lingkaran L ≡ x2 + y2 = 16, jika diketahui mempunyai gradien 3.
Penyelesaian :
Lingkaran L ≡ x2 + y2 = 16, pusat di O(0,0) dan jari-jari r = 4, mempunyai gradien m = 3.Persamaan garis singgungnya : y = 3x ± 4√1 + (3)2
y = 3x ± 4√10
y = 3x + 4√10 atau 3x – 4√10
Jadi, persamaan garis singgung pada lingkaran L ≡ x2 + y2 = 16 dengan gradien m = 3 adalah
y = 3x + 4√10 dan 3x – 4√10
6. Tentukan persamaan garis singgung lingkaran L ≡ (x – 1)2 + (y + 2)2 = 9 yang mempunyai gradien m = 5/12
Penyelesaian :
Persamaan garis singgungnya : (y + 2) =5/12(x – 1) ± 3√(1 + (5/12)2(y + 2) = 5/12(x – 1) ± 39/12
12y + 24 = 5x – 5 ± 39
5x – 12y – 29 ± 39 = 0
5x – 12y – 10 = 0 dan 5x – 12y – 68 = 0
Jadi, persamaan garis singgung lingkaran L ≡ (x – 1)2 + (y + 2)2 = 9 yang mempunyai gradien m= 5/12 adalah
5x – 12y – 10 = 0 dan 5x – 12y – 68 = 0
0 komentar:
Posting Komentar
Jangan cuma baca, sampaikan kripik dan sarapan anda melalui komentar.